

Inhalt

Vorwort Stichwortverzeichnis

Hinweise u	nd Tipp	s zum Z	Zentral	labitur
------------	---------	---------	---------	---------

		P.F.	
1	Ablauf	der Prüfung	I
2	Inhalte	der Prüfungsaufgaben	II
3 3.1 3.2 3.3 3.4	Inhaltsh Method Aufgab	gsanforderungen bezogene Anforderungen lenbezogene Anforderungen enstruktur und Aufgabentypen ung der Aufgaben	V V VI VII
4	Anford	erungsbereiche und Operatoren	VIII
5 5.1 5.2 5.3 5.4	Lösung Tipps z Tipps z	lische Hinweise und allgemeine Tipps zur schriftlichen Prüfung splan zur Bearbeitung der Aufgaben ur Analyse von Tabellen, Diagrammen und Abbildungen ur Bearbeitung der experimentellen Aufgabe anzutreffende Fehlertypen im Fach Chemie	XIV
Übı	ıngsaufg	gaben im Stil der neuen Abiturprüfung	
Auf	gabe 1:	Von Erdöl und Erdgas zum Produkt (Reaktionswege in der organischen Chemie; Elektrochemische Prozesse und Energetik; Moderne Werkstoffe; Säuren, Basen und	
Auf	gabe 2:	analytische Verfahren)	1
Auf	gabe 3:	und Energetik; Moderne Werkstoffe)	9 20
Auf	gabe 4:	Der C4-Schnitt: Butenisomere in der Industrie (Reaktionswege in der organischen Chemie; Elektrochemische Prozesse	20
		und Energetik; Moderne Werkstoffe)	29

Original-Abituraufgaben

Leistungskui	rs Abiturprüfung 2018	
Vorschlag 1:	Vanillin	LK 2018-1
Vorschlag 2:	Breaking Bad: Selbstbaubatterie zum Starten eines Motors	LK 2018-12
Vorschlag 3:	Hydroxybuttersäure: Ein Mittel gegen Narkolepsie	LK 2018-19
Leistungskui	rs Abiturprüfung 2019	
Vorschlag 1:	Entroster	LK 2019-1
Vorschlag 2:	Selbsttönende Brillengläser	LK 2019-7
Vorschlag 3:	Von der Chlorgewinnung zum Herbizid	LK 2019-13
Leistungskui	rs Abiturprüfung 2020	
Vorschlag 1:	Polyvinylbutyral macht Scheiben sicher	LK 2020-1
Vorschlag 2:	Recycling von Natriumsulfat durch Elektrodialyse	LK 2020-8
Vorschlag 3:	Rotrost und Weißrost: Korrosionsvorgänge an Eisen und Zink	LK 2020-15
Leistungskui	rs Abiturprüfung 2021	
Vorschlag 1:	Galvanische Elemente nach GROVE und BUNSEN	LK 2021-1
Vorschlag 2:	Blausäure – Eigenschaften und ihr Einsatz in der organischen Chemie	LK 2021-9
Vorschlag 3:	Farbauffrischung mit Reactive Black 5	LK 2021-16
Leistungskui	rs Abiturprüfung 2022	
Vorschlag 1:	"Gezieltes Heilen" durch Nano-Polyester	LK 2022-1
Vorschlag 2:	Korrosionsprobleme im Bootssport	LK 2022-10
Vorschlag 3:	Gelbe Farbstoffe in Safran und Kurkuma	LK 2022-19
Leistungskui	rs Abiturprüfung 2023	
Vorschlag 1:	Anlaufen und Reinigen von Silber	LK 2023-1
Vorschlag 2:	Ballistische Schutzwesten	LK 2023-10
Vorschlag 3:	Carmoisin – Synthese und Einsatz als	
	Lebensmittelfarbstoff	LK 2023-18

Leistungskurs Abiturprüfung 2024

Die Original-Prüfungsaufgaben der **Grundkurse** 2018–2024 samt Lösungen stehen wie der LK 2024 zum Download auf MySTARK zur Verfügung.

Autoren

Dr. Michael Linkwitz: Lösungen der Aufgaben GK und LK 2022–2024 Gregor von Borstel: Lösungen der Aufgaben GK und LK 2018–2021

Dr. Stephan Kienast: Übungsaufgaben 1−3

Cay Götz: Übungsaufgabe 4

Vorwort

Liebe Schülerinnen, liebe Schüler,

das vorliegende Buch bietet Ihnen die Möglichkeit, sich optimal auf die zentral gestellte, schriftliche Abiturprüfung 2025 und 2026 in Nordrhein-Westfalen im Fach Chemie vorzubereiten.

Im Abschnitt "**Hinweise und Tipps zum Zentralabitur**" bieten wir Ihnen dazu zunächst einen Überblick über:

- den Ablauf und die Anforderungen des Zentralabiturs 2025 und 2026 in NRW. Dies hilft Ihnen, die formalen Rahmenbedingungen für das Zentralabitur kennenzulernen. Erläuterungen zu den Prüfungsanforderungen, zum Umgang mit den sogenannten Operatoren und zu den festgesetzten thematischen Schwerpunkten lassen Sie die Prüfungssituation besser einschätzen.
- die erfolgreiche Bearbeitung der Arbeitsaufträge und Materialien in den Prüfungsaufgaben. Die "Tipps zum Umgang mit Prüfungsaufgaben" zeigen Ihnen konkret, wie Sie erfolgreich an die Aufgaben der schriftlichen Abiturprüfung herangehen können.

Dieses Buch enthält die **Original-Prüfungsaufgaben** 2018 bis 2024. Sobald die **Abiturprüfungen** 2024 des LK und des GK zur Veröffentlichung freigegeben sind, können sie als PDF auf der Plattform MySTARK heruntergeladen werden. Zu allen Aufgaben bieten wir Ihnen ausführliche, kommentierte Lösungsvorschläge mit Tipps und Hinweisen zur Lösungsstrategie.

Da die Inhalte der Grundkursaufgaben 2018 bis 2023 denen der Leistungskurse stark ähneln, stehen diese **Original-Prüfungsaufgaben** sowie die ausführlichen Lösungen ebenfalls als Download zur Verfügung.

Lernen Sie gerne am **PC** oder **Tablet**? Nutzen Sie die Plattform MySTARK, um mithilfe von **interaktiven Aufgaben** Ihr chemisches Fachwissen effektiv zu trainieren. Außerdem stehen Ihnen hier hilfreiche **Lernvideos** zu zentralen Themen zur Verfügung (Zugangscode siehe Umschlaginnenseite).

Sollten nach Erscheinen dieses Bandes noch wichtige Änderungen in der Abiturprüfung 2025 oder 2026 vom Schulministerium NRW bekanntgegeben werden, sind aktuelle Informationen dazu online auf der Plattform MySTARK abrufbar.

Das Autorenteam und der Verlag wünschen Ihnen für die Prüfungsvorbereitung und Ihre schriftliche Abiturprüfung viel Erfolg!

Hinweise und Tipps zum Zentralabitur

1 Ablauf der Prüfung

In Nordrhein-Westfalen findet die Abiturprüfung in Form des Zentralabiturs statt, d. h., alle Schülerinnen und Schüler mit Leistungskurs oder Grundkurs Chemie schreiben ihre Abiturklausur jeweils an demselben Tag. Landesweit erhalten alle Schulen dieselben Prüfungsaufgaben.

Als Prüfling werden Ihnen vier Aufgaben vorgelegt, von denen Sie **drei zur Bearbeitung auswählen** müssen. Die **Bearbeitungszeit** für die **Leistungskursklausur** beträgt **300 Minuten**, für die **Grundkursklausur 255 Minuten** – jeweils inklusive der Auswahlzeit. Denken Sie daran: Je schneller Sie sich darüber im Klaren sind, welche drei Aufgaben Sie bearbeiten wollen, desto mehr Zeit haben Sie für deren Bearbeitung. Für den Fall, dass eine "**Fachpraktische Aufgabe**" gestellt wird, kann sich die Gesamtbearbeitungszeit erhöhen.

Bis zur Prüfung 2024 wurden den Abiturientinnen und Abiturienten zwei Aufgaben vorgelegt, die beide bearbeitet werden mussten. Die Bearbeitungszeit für die Leistungskursklausur betrug 270 Minuten, für die Grundkursklausur 225 Minuten.

Folgende Hilfsmittel sind während der Abiturprüfung zugelassen:

- Deutsches Wörterbuch
- Wissenschaftlicher Taschenrechner (mit oder ohne Grafikfähigkeit oder ein CAS-Taschenrechner)
- Dokument mit Formeln und relevanten Werten im Fach Chemie
 (zu finden unter: https://www.standardsicherung.schulministerium.nrw.de/cms/
 zentralabiturgost/faecher/fach.php?fach=7)

Aufgabenarten

Für die schriftliche Abiturprüfung sind folgende Aufgabenarten vorgesehen:

- Durchführung und Bearbeitung eines **Schülerexperimentes**
- Bearbeitung eines **Demonstrationsexperimentes**
- Bearbeitung einer Aufgabe, die auf sonstigen **fachspezifischen Vorgaben** basiert.

Die Inhalte dieser Vorgaben können z. B. vermittelt werden in Form von Beschreibungen nicht vorgeführter Experimente, Texten, Bildern, Tabellen, Graphen, vorgegebenen Messreihen.

Mischformen der genannten Aufgabenarten sind möglich. Eine ausschließlich aufsatzartig zu bearbeitende Aufgabenstellung, d. h., eine Aufgabe ohne Material- oder Experimentbezug, ist nicht zulässig.

2 Inhalte der Prüfungsaufgaben

Grundlage für die zentral gestellten schriftlichen Aufgaben der Abiturprüfung sind die verbindlichen Vorgaben des aktuellen Kernlehrplans für die gymnasiale Oberstufe. Zusätzlich werden jedes Jahr die inhaltlichen Schwerpunkte des Kernlehrplans für den Unterricht in der Qualifikationsphase konkretisiert. Durch diese **Fokussierung** soll gesichert werden, dass alle Schülerinnen und Schüler, die das Abitur ablegen, gleichermaßen über die notwendigen inhaltlichen Voraussetzungen für eine angemessene Anwendung der Kompetenzen bei der Bearbeitung der zentral gestellten Aufgaben verfügen.

Folgende Schwerpunkte und Fokussierungen gelten für die Jahre 2025 und 2026 (*kursiv* gesetzte Inhalte gelten nur für den Leistungskurs; auch abrufbar unter: https://www.standardsicherung.schulministerium.nrw.de/cms/zentralabiturgost/faecher/fach.php?fach=7):

Säuren, Basen und analytische Verfahren

Protolysereaktionen: Säure-Base-Konzept nach Brønsted, Säure-/Base-Konstanten (K_S, pK_S, K_B, pK_B), Reaktionsgeschwindigkeit, chemisches Gleichgewicht, Massenwirkungsgesetz (K_c), pH-Wert-Berechnungen wässriger Lösungen von starken Säuren und starken Basen, pH-Wert-Berechnungen wässriger Lösungen von Säuren und Basen, Puffersysteme

- · Reaktionsgeschwindigkeit
- Massenwirkungsgesetz
- pH-Wert-Berechnungen bei vollständiger Protolyse
- pH-Wert-Berechnungen (u. a. unvollständige Protolyse und Puffersysteme)

Löslichkeitsgleichgewichte

- Qualitative und quantitative Betrachtung
- Fällungsreaktionen

Analytische Verfahren: Nachweisreaktionen (Fällungsreaktion, Farbreaktion, Gasentwicklung), Nachweise von Ionen, Säure-Base-Titrationen von starken Säuren und starken Basen (mit Umschlagspunkt)

- · Qualitativer Nachweis von Gasen und Ionen
- Säure-Base-Titrationen von starken Säuren und Basen mit Auswertung und Fehleranalyse
- Säure-Base-Titrationen und pH-metrische Titrationen mit Auswertung und Fehleranalyse
- Vergleich von Titrationsverfahren

Energetische Aspekte: Erster Hauptsatz der Thermodynamik, Neutralisationsenthalpie, Kalorimetrie, *Lösungsenthalpie*

Entropie

Ionengitter, Ionenbindung

Elektrochemische Prozesse und Energetik

Redoxreaktionen als Elektronenübertragungsreaktionen

- Redoxreaktionen als dynamische Gleichgewichtsreaktionen
- Donator-Akzeptor-Konzept

Galvanische Zellen: Metallbindung (Metallgitter, Elektronengasmodell), Ionenbindung, elektrochemische Spannungsreihe, elektrochemische Spannungsquellen, Berechnung der Zellspannung, Konzentrationszellen (Nernst-Gleichung)

- Batterien, Akkumulatoren, Brennstoffzelle
- Heterogene Katalyse bei Brennstoffzellen
- Berechnungen mithilfe der Nernst-Gleichung

Elektrolyse: Faraday-Gesetze, Zersetzungsspannung (Überspannung)

- Anwendungen mit Reaktion und Teilreaktionen, z. B. Galvanisieren
- Berechnung mithilfe der Faraday-Gesetze
- Zersetzungsspannung

Redoxtitration

Konzentrationsermittlung

Alternative Energieträger

- Effizienz
- Nachhaltigkeit

Energiespeicherung

Korrosion: Sauerstoff- und Säurekorrosion, Korrosionsschutz

- Korrosion
- Korrosionsschutz
- Lokalelemente

Energetische Aspekte: Erster *und Zweiter* Hauptsatz der Thermodynamik, Standardreaktionsenthalpien, Satz von Hess, *freie Enthalpie, Gibbs-Helmholtz-Gleichung*, heterogene Katalyse

Reaktionswege in der organischen Chemie

Funktionelle Gruppen verschiedener Stoffklassen und ihre Nachweise: Hydroxygruppe, Carbonylgruppe, Carboxygruppe, Estergruppe, Aminogruppe

- Einfluss funktioneller Gruppen auf Stoffeigenschaften und Reaktionsverhalten
- Ausgewählte Isomere

Alkene, Alkine, Halogenalkane

• Nachweis von Doppelbindungen (siehe elektrophile Addition, Fette)

Struktur und Reaktivität des aromatischen Systems

- Reaktionsmechanismen (siehe unten)
- Mesomerie

berechnen	Die Berechnung ist ausgehend von einem Ansatz darzustellen.	LK 18/V2/4 LK 20/V2/3 LK 21/V2/3 LK 23/V1/1
beschreiben	Beobachtungen, Strukturen, Sachverhalte, Methoden, Verfahren oder Zusammenhänge strukturiert und unter Verwendung der Fachsprache formulieren	LK 21/V1/1 LK 22/V1/4
beurteilen	Das zu fällende Sachurteil ist mithilfe fachlicher Kriterien zu begründen.	LK 20/V3/4 LK 21/V1/4 LK 22/V3/4 LK 23/V1/2
bewerten	Das zu fällende Werturteil ist unter Berücksichtigung gesellschaftlicher Werte und Normen zu begründen.	LK 18/V1/1 LK 21/V2/3
darstellen	Strukturen, Sachverhalte oder Zusammenhänge strukturiert und unter Verwendung der Fachsprache formulieren, auch mithilfe von Zeichnungen und Tabellen	LK 18/V1/3 LK 20/V1/1
diskutieren	Argumente zu einer Aussage oder These einander gegenüberstellen und abwägen	LK 19/V3/4 LK 22/V2/4
erklären	einen Sachverhalt nachvollziehbar und verständlich machen, indem man ihn auf Regeln und Gesetzmäßigkeiten zurückführt	LK 18/V2/2 LK 21/V3/1 LK 23/V1/3
erläutern	einen Sachverhalt veranschaulichend darstellen und durch zusätzliche Informationen verständlich machen	LK 18/V1/2 LK 19/V2/3 LK 21/V3/3 LK 23/V1/4
ermitteln	ein Ergebnis oder einen Zusammenhang rechnerisch, grafisch oder experimentell bestimmen	LK 18/V2/1 LK 19/V1/1
herleiten	mithilfe bekannter Gesetzmäßigkeiten einen Zusammenhang zwischen chemischen bzw. physikalischen Größen herstellen	_
interpretieren, deuten	naturwissenschaftliche Ergebnisse, Beschreibungen und Annahmen vor dem Hintergrund einer Fragestellung oder Hypothese in einen nachvollziehbaren Zusammenhang bringen	LK 21/V1/3
ordnen	Begriffe oder Gegenstände auf der Grundlage bestimmter Merkmale systematisch einteilen	-
planen	zu einem vorgegebenen Problem (auch experimentelle) Lösungswege entwickeln und dokumentieren	LK 21/V2/4

skizzieren	Sachverhalte, Prozesse, Strukturen oder Ergebnisse übersichtlich grafisch darstellen	LK 18/V2/1 LK 19/V3/1 LK 21/V2/4
untersuchen	Sachverhalte oder Phänomene mithilfe fachspezifischer Arbeitsweisen erschließen	LK 22/V1/4
vergleichen	Gemeinsamkeiten und Unterschiede kriteriengeleitet herausarbeiten	LK 23/V2/4
zeichnen	Objekte grafisch exakt darstellen	LK 20/V2/1

5 Methodische Hinweise und allgemeine Tipps zur schriftlichen Prüfung

Um eine Prüfungsaufgabe effizient und erfolgreich zu bearbeiten, ist ein strukturiertes, sorgfältiges Vorgehen unumgänglich. Im folgenden Lösungsplan sind die hierfür wichtigen Arbeitsschritte erläutert. Darüber hinaus finden Sie wertvolle Tipps zur Materialienanalyse und zu den speziellen Erfordernissen bei der Bearbeitung der experimentellen Aufgabe. Die abschließende Auflistung häufig anzutreffender Fehlertypen hilft Ihnen, Fehler zu vermeiden.

5.1 Lösungsplan zur Bearbeitung der Aufgaben

Folgende Einzelschritte sind bei der Bearbeitung der Aufgaben zu beachten:

• Auswahl der Aufgaben:

Die Auswahl der drei Aufgabenblöcke, in denen Sie voraussichtlich die meisten Bewertungseinheiten erreichen können, ist von größter Wichtigkeit. Ein späterer Wechsel, den Sie vornehmen, da sich erst bei genauerer Betrachtung eine wichtige Teilaufgabe als zu schwierig herausstellt, ist sehr zeitraubend. Nehmen Sie sich daher die Zeit, das Material jeder Aufgabe zu sichten und die Teilaufgaben genau durchzulesen. Lassen Sie sich nicht abschrecken von langen Texten oder von völlig unbekannten Skizzen und Tabellen. Achten Sie auf die im vorangehenden Abschnitt erklärten Anforderungsbereiche und die dazu gehörenden Operatoren. Ergebnisse einer Messreihe (z. B. als Diagramm) "darzustellen" ist viel leichter als diese "auszuwerten".

• Zeitplan und Start der Bearbeitung:

Für die weitere Bearbeitung setzen Sie sich einen Zeitplan, damit Ihnen nicht am Ende die Zeit für die letzte Aufgabe oder das Korrekturlesen fehlt. Fangen Sie dann mit der Bearbeitung der für Sie am besten geeigneten Teilaufgabe an. Dabei kann Ihnen ein systematisches Vorgehen entsprechend der nachfolgend dargestellten Schritte das Erarbeiten der zu den Anforderungen jeder Teilaufgabe passenden Lösung erleichtern.

• Analysieren der Materialvorgaben:

Zur Bearbeitung der Aufgaben benötigen Sie Fakten und Daten aus den Materialien. Deshalb sollten Sie diese, bevor Sie mit der Bearbeitung der Aufgaben beginnen, gründlich lesen und sich wichtige Informationen unterstreichen.

Chemie (NRW) – Abiturprüfung 2021 Leistungskurs: Vorschlag 3

ema: Farbaum ischung mit Keacuve black 5	
fgabenstellung	Punkte
Beispiel von Reactive Black 5. Geben Sie begründet einen Bereich für das zu erwartende Absorptionsmaximum und eine weitere relevante meso-	
zum p-Acetanilidsulfinat und ordnen Sie den ablaufenden Reaktionen	
den Ablauf der Synthese von Reactive Black 5 ausgehend von Parabase-	
von Reactive Black 5 in alkalischer Lösung unter Verwendung geeigneter vereinfachter Strukturformeln an. Erläutern Sie anhand der Molekülstruktur und unter Angabe eines Reaktionsschemas mithilfe der Kurzschreibweise und des Reaktionstyps die Haftung des Farbstoffs Reactive Black 5 auf Baumwollfasern. Erläutern Sie die Haftung des Farbstoffs auf Polyesterfasern. Beurteilen Sie die Eignung des Farbauffrischers für Textilien	
	Erklären Sie den Zusammenhang zwischen Struktur und Farbigkeit am Beispiel von Reactive Black 5. Geben Sie begründet einen Bereich für das zu erwartende Absorptionsmaximum und eine weitere relevante mesomere Grenzstruktur des Farbstoff-Moleküls anhand der geeigneten Kurzschreibweise an (siehe Zusatzinformationen). Entwickeln Sie Reaktionsschemata für die Reaktionen vom Acetanilid zum p-Acetanilidsulfinat und ordnen Sie den ablaufenden Reaktionen Reaktionstypen zu. Begründen Sie den Ort der Zweitsubstitution bei der Chlorsulfonierung von Acetanilid. Erläutern Sie unter Verwendung geeigneter vereinfachter Strukturformeln den Ablauf der Synthese von Reactive Black 5 ausgehend von Parabaseester und H-Säure. Erklären Sie, warum die Synthese unter Kühlung stattfinden muss. Geben Sie eine Reaktionsgleichung und den Reaktionstyp der Reaktion von Reactive Black 5 in alkalischer Lösung unter Verwendung geeigneter vereinfachter Strukturformeln an. Erläutern Sie anhand der Molekülstruktur und unter Angabe eines Reaktionsschemas mithilfe der Kurzschreibweise und des Reaktionstyps die Haftung des Farbstoffs Reactive Black 5 auf Baumwollfasern. Erläutern Sie die Haftung des Farbstoffs auf Polyesterfasern. Beurteilen Sie die Eignung des Farbauffrischers für Textilien aus den jeweiligen Gewebefasern hinsichtlich der Kriterien Haftung und

Fachspezifische Vorgaben

Nach zahlreichen Wäschen verblassen die Farben vieler Textilien. Mit Farbauffrischern kann dem entgegengewirkt werden, sodass das "Lieblingsstück" länger erhalten bleibt. Ein für schwarze Textilien geeigneter Farbstoff ist Reactive Black 5.

Reactive Black 5:

Bei Reactive Black 5 handelt es sich um einen Reaktivfarbstoff, d. h., das Farbstoff-Molekül besitzt neben der farbgebenden Komponente eine reaktive Komponente, die mit den funktionellen Gruppen der Faseroberfläche reagieren kann. Mit Reactive Black 5 lässt sich ein blauer bis schwarzer Farbton erzielen.

Synthese von Reactive Black 5:

Der benötigte Parabaseester wird aus Acetanilid hergestellt.

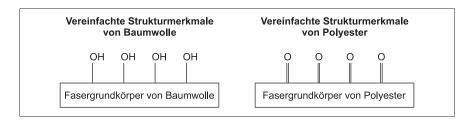
- An Acetanilid wird durch eine Reaktion mit Chlorschwefelsäure (HSO₃Cl) eine Chlorsulfonylgruppe (–SO₂Cl) gebunden (Chlorsulfonierung).
- Nach Reduktion mit Natriumsulfit (Na₂SO₃), das zum Natriumsulfat oxidiert wird, entsteht *p*-Acetanilidsulfinat.
- Aus diesem Zwischenprodukt entsteht in weiteren Reaktionsschritten schließlich Parabaseester.

Zur Synthese von Reactive Black 5 wird eine Lösung von Parabaseester mit Natriumnitrit (NaNO₂) und Salzsäure (HCl (aq)) versetzt. Die dabei entstehenden Diazonium-Ionen lässt man anschließend mit H-Säure zum Farbstoff reagieren.

Färben mit Reactive Black 5:

Die zu färbenden Textilien werden zusammen mit Reactive Black 5 und Waschmittel in der Waschmaschine gewaschen. In dem vorherrschenden alkalischen Milieu spaltet das Reactive Black 5-Molekül formal Schwefelsäure ab und es entsteht ein Farbstoffmolekül der vereinfachten Formel R-SO₂-CH=CH₂. Die Doppelbindung kann nun mit den OH-Gruppen der Baumwolloberfläche reagieren.

Zusatzinformationen


$$O \longrightarrow NH \longrightarrow NH \longrightarrow S$$

Acetanilid

 $O \longrightarrow NH \longrightarrow S$
 $O \longrightarrow$

Kurzschreibweise des Farbstoffmoleküls zur Betrachtung der Farbigkeit:

Kurzschreibweise des Farbstoffmoleküls zur Betrachtung der Reaktivität:

Wellenlänge λ in nm	Spektralfarbe	Komplementärfarbe
< 400	ultraviolett	farblos
400-435	violett	gelbgrün
435-480	blau	gelb
480-490	grünblau	orange
490-500	blaugrün	rot
500-560	grün	purpur
560-580	gelbgrün	violett
580-595	gelb	blau
595-605	orange	grünblau
605-770	rot	blaugrün
605-770	rot	blaugrün

Tab. 1: Zusammenhang von absorbierter Strahlung, zugehöriger Spektralfarbe und beobachteter Komplementärfarbe

Materialgrundlage:

simplicol Back to Black – Textilfarbe, Fa. Brauns-Heitmann, Warburg, Anwendungshinweise https://www.spektrum.de/lexikon/chemie/reaktivfarbstoffe/7846 (Zugriff: 28.01.2021) EP0043796BI – Verfahren zur Herstellung von Disazofarbstoffen, Europäisches Patentamt, 08.05.1985

Lösung

1 Die Moleküle zahlreicher organischer Verbindungen wie Reactive Black 5 sind in der Lage, aus dem sichtbaren Bereich des Lichtspektrums Strahlung bestimmter Wellenlängenbereiche zu absorbieren. Die nicht absorbierten, reflektierten Strahlungsanteile werden von Menschen als Komplementärfarbe wahrgenommen.

Die für den Menschen blauschwarze Farbe von Reactive Black 5 lässt sich folglich damit erklären, dass das Reactive-Black 5-Molekül im **gesamten Bereich** des sichtbaren Spektrums Licht absorbiert. Dabei gibt es ein ausgeprägtes **Absorptionsmaximum** im Wellenlängenbereich zwischen **580 und 595 nm**, sodass der reflektierten Strahlung relativ gesehen am meisten die gelben Farbanteile fehlen. Dadurch wird die Komplementärfarbe Blau sichtbar.

Die Absorption von Licht beruht auf der Anregung von **delokalisierten Elektronen** in dem organischen Molekül vom höchsten besetzten Molekülorbital (HOMO) (bzw. HBE, höchste besetzte Energiestufe) in das niedrigste unbesetzte Molekülorbital (LUMO) (bzw. NUE, niedrigste unbesetzte Energiestufe).

Für die Energie und die Wellenlänge von Photonen gilt:

 $E = h \cdot v$ mit Energie E, Fequenz v und der Konstante h

 $\textit{und } v = \frac{c}{\lambda} \qquad \textit{mit Lichtgeschwindigkeit c und Wellenlänge} \, \lambda$

Bei organischen Molekülen mit **ausgedehnten konjugierten** π -Elektronensystemen sind ebendiese π -Elektronen über den gesamten Bereich des konjugierten Systems delokalisiert. Eine Folge daraus ist die Tatsache, dass der energetische Abstand zwischen HOMO und LUMO kleiner wird. Dadurch genügt bereits Licht vergleichsweise niedriger Energie zur Anregung der Elektronen aus dem HOMO-Niveau in das LUMO-Niveau. Ein Photon mit der passenden Energie (also mit einer Wellenlänge λ im sichtbaren Bereich) wird somit absorbiert und seine Energie anderweitig wieder freigesetzt.

Da Reactive Black 5 im ganzen sichtbaren Spektrum absorbiert, muss es streng genommen zahlreiche passende und mögliche Übergänge von besetzten Energiestufen zu unbesetzten geben. Diese Vorgänge sind komplizierter und übersteigen das Abiturniveau.

Im Zentrum des Moleküls von Reactive Black 5 liegt bereits ein ausgedehntes π -Elektronensystem mit zwei Phenylringen als Chromophor vor, das sich zudem über zwei Azogruppen jeweils über weitere Phenylringe erstreckt. Die Delokalisierung wird durch die Aminogruppe und die Hydroxygruppe als +M-Substituenten (**Auxochrome** bzw. Donatorgruppen) und die Azogruppen als -M-Substituenten (**Antiauxochrome** bzw. Akzeptorgruppen) verstärkt.

Folgende exemplarisch ausgewählte mesomere Grenzstrukturen zeigen, dass im Farbstoffmolekül ein **ausgedehntes System delokalisierter Elektronen** vorliegt:

Dies ist nur eine von mehreren denkbaren Grenzstrukturen unter Einbeziehung der Hydroxygruppe. Es ist sinnvoll, bei der Zeichnung der Grenzstrukturen auch die relevanten freien Elektronenpaare zu zeichnen. Die Sulfonatgruppen dienen im Übrigen nicht nur der Wasserlöslichkeit, sondern sie tragen möglicherweise auch ein wenig zur weiteren Delokalisierung des π -Elektronensystems bei.

Zusammengenommen ermöglicht dies eine Lichtabsorption in den oben genannten Wellenlängenbereichen bzw. von Licht der passenden Energie.

2 Die Reaktionsschemata für die Reaktionen von Acetanilid zu p-Acetanilidsulfinat können in zwei Schritten notiert werden.

+ Na₂SO₃ + H₂O

NH

NH + Na_2SO_4 + HCl p-Acetanilidsulfinat

Die 1. Reaktionsgleichung ist eine vereinfachte Darstellung. In Wirklichkeit reagieren zwei Chlorschwefelsäure-Moleküle und Acetanilid unter Bildung von HCl und H₂SO₄.

Die Chlorsulfonierung ist dem Reaktionstyp **elektrophile, aromatische Substitution** (genauer gesagt Zweitsubstitution) zuzuordnen. Die Herstellung von *p*-Acetanilidsulfinat erfolgt als Redoxreaktion.

Bei der Zweitsubstitution könnte prinzipiell eine Substitution des Wasserstoffatoms in *ortho-*, *meta* oder *para-*Stellung zum Erstsubstituenten erfolgen. Die funktionelle Gruppe des Acetanilids ist allerdings bedingt durch ihren +M-Effekt *ortho-* und *para-*dirigierend.

Da die beiden großen, "sperrigen" Substituenten in *ortho*-Position sehr nah zueinander stehen würden, entsteht hauptsächlich das *para*-Produkt ("räumliche bzw. sterische Effekte").

Zur Bildung der Diazokomponente wird zunächst eine Lösung von Parabaseester mit **Natriumnitrit** (NaNO₂) und **Salzsäure** (HCl (aq)) versetzt. NaNO₂ dissoziiert zu Na⁺ und NO₂. Das Nitrit-Ion wird im sauren Milieu zu H₂NO₂⁺ protoniert, das durch Wasserabspaltung wiederum mit dem **Nitrosyl-Ion** NO⁺ im Gleichgewicht steht:

$$NaNO_2 + HCl \longrightarrow HNO_2 + NaCl$$

 $HNO_2 + H^+ \longrightarrow NO^+ + H_2O$

Das Nitrosyl-Kation ist ein **Elektrophil**. Es addiert also elektrophil an die NH₂-Gruppe des Parabaseesters und Wasser spaltet sich ab. Dabei entsteht das Diazonium-Ion:

$$R-NH_3+\stackrel{\oplus}{|N=O\rangle} \longrightarrow R-\stackrel{\oplus}{N=N} |+H_2O$$

Der Prozess lässt sich noch genauer beschreiben. Nach der Abspaltung eines Protons ...

$$\begin{array}{c} H \\ R - \stackrel{|}{N} \stackrel{\oplus}{\longrightarrow} \stackrel{-}{N} = 0 \rangle \xrightarrow{-H^+} \end{array}$$

... und der Umlagerung des zweiten Protons ...

$$R - \overline{N} - \overline{N} = 0$$

$$R - \overline{N} = \overline{N} - \overline{0}H$$

... kann durch Hinzufügen von Säure das Abspalten eines Wasser-Moleküls erfolgen und es bildet sich das Diazonium-Ion:

$$R - \underbrace{N}_{-} = \overline{N} - \underbrace{\overline{O}_{H}}_{-H_{2}O} \xrightarrow{+H^{+}} \left[R - \underbrace{N}_{-} = \overline{N} \xrightarrow{\oplus} R - \underline{N}_{-} = \overline{N}^{\oplus} \right]$$

Die eigentliche Bildung des Farbstoffes erfolgt nun in **zweifacher Azokupplung** durch den elektrophilen Angriff des Diazonium-Ions an das Molekül der H-Säure. Dabei werden mehrere Schritte durchlaufen: Zuerst erfolgt die Bildung eines π -Komplexes, dann eines mesomeriestabilisierten σ -Komplexes und schließlich wird das aromatische System durch Abspaltung eines Protons wiederhergestellt ("Rearomatisierung").

Dies soll für eine Azokupplung genauer gezeigt werden, die andere verläuft analog.

© STARK Verlag

www.stark-verlag.de info@stark-verlag.de

Der Datenbestand der STARK Verlag GmbH ist urheberrechtlich international geschützt. Kein Teil dieser Daten darf ohne Zustimmung des Rechteinhabers in irgendeiner Form verwertet werden.

